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Ba~je s and Equivariant Estimators of the Vari ance of a Finite Fk)pulation

By

S. Zacks and 11. Solomon

0. Introduction.

Let x1,. . . ,X~~ be the values of a variable x that measures a

characteristic in a finite population of N elements. Let

N N
(0.1 = I~ .~~~~ ~i ‘ ° N ~ 

~ (x~-~i)
i=l 1=1

be the population mean and. variance of the measurements. In the present

paper the problem of estimating on the basis of a sampl e X1,...,X~,

2 < n  < N , from the population is studied. The comn~ nly msed estimator

“2 1 2
is the sample variance = ~~ (x1

_
~~) , where = ~ X~ is the

a=1 i=l
N 2sample mean. It is well known that is an unbiased estimator of

under simple random sampling.

In the present study the “urthiased” estimator is replaced by

~ (x1-x~)~, which is called the “classical” estimator. The two
ir1

estimators are nearly equivalent if the sample size is not trivially small.

The “classical” estimator does not utilize any prior in±’ormation on ~.
2 that

may be often available. There are many examples of repetitive sampling

surveys, in agri cultural or industrial areas, in which good information is

available on the distribution of the seasonal or yearly yield (production)

of a certain commodity. Samples may be taken during the season to observe

the distribution of related characteristics that may improve the forecasting

of a population value. Estimates of the variance in the population could be

adjusted adaptively in order to imporve the prediction (confidence) intervals

for population parameters.

78 12
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In this paper we show how such prior information on the mean and

vari ance of the population can be utilized to adjust the “classical”

estimator. Specifically, by utilizing the special structure of the sample

survey theoretical r~~del and of the likelihood function we derive the

general form of Bayes and Bayes Equivariant estimators. It is sho’~m

that for any ~riôr distribution, H , of independent identically distri-

buted variables x1,... )X
N~ 

having a prior mean and prior variance

the Bayes estimator of ~2 fox squared-error loss is (approximately)

(0.2) + (1 - ~)[cr~ + ~~ (~~~~~)
2
]

Estimator (0.2) does not depend on the sampling procedure. This Bayes

~~timator is a weighted average of the “classical.” estimator, ~~~~, based on

the observed sample and the Bayes estimator of the “within” variance in the

unobserved portion of the population and the estimator of the variance

between the means of the observed and unobserved portions of the population.

The estimator (0.2) could well be found very meaningful and good. also in a non-

Bayesian sense by considering ~~~ and cr~ as proper estimates (or quesses ) of

the mean and variance of the unobserved part of the population.

Equivariant estimators of the variance are considered with respect

to the group fi of real affine transformations on the parameter space

2
of (x1,.. . ,x~ ). 

It is shown that cvcry equivariant estimator of can be

expressed in the general form ~~4r(u~ )~ where ~r(u ) is a proper function

of the maximal invariant statistic, which is the vector of standardized

sample values. Bayes equivariant estimators are studied, with respect to
0 0 0

‘
V. - C. (~ Athe quadratic loss function L (rn~
ir (un )~ij) 

.

~ ~~~~~~~~~~~~ “°
~n 

In contrast
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to the case of determining Bayes estimators, the form of the Bayes equivariant

estimator depends strongly on the particular prior distribution specified

for x1,.. . ,x~. For example, it is shown that

(0.3) = ~~~(i - ~ )(i + ~~
) = + o(~) ,

is the Bayes equivariant estimator for prior normal i.i.d. variables,

regardless of their prior mean and variance. The above formula (0.3)

is relatively simple. It depends only on and does not depend on

This is not always the case, as shown by Zacks (16) in the case of

exponentially distributed i.i.d. variates.

In Section 1 we Introduce the sample survey model and discuss sample

statistics and likelihood. functions . The Bayesian approasth extending the

sample survey model is discussed in Section 2. Sections 3 and is. define and.

analyze equivariant estimators, Bayesian concepts and loss functions .

Bayesian measures of relative efficiency are introduced in Section 5.

We provide a numerical example in which fifty populations of size N = 100

were simulated from an exponential distribution. From each such popula-
A2 A 2tion a sample of size n = 10 was drawn and. the estimators and

were computed. It is interesting to observe the extent to which the

“2Bayes estimator T
B is more effective than the classical estimator

in small samples. Estimate of their Bayes relative efficiency is provided

in that example. General efficiency analysis is provided for prior normal

distributions. It is shown that the classical estimator is considerably

less efficient than the Bayes estimator. Some sensitivity analysis is

performed to study the effects of erroneous prior parameters on the

relative efficiency. uISTt~ h~1I(MW~ flT CUfltS
01st. AVAIL sn~/or SPECIAL_ .~ tH ~
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There are only a few published papers on the Bayesian estimation of the

variance of a finite population. Liu [9) considered unbiased estimators

of 4 under various possible sampling designs. Since the sampling

variance of these estimators depends on the population values

Liu considered the Bayes risk of these estimators. He derived a lower

bound to the Bayes risk ftnction and thus showed the optimality of the

Eorwitz-Thompson type estimator, under certain conditions. We remark

that Liu ’s study is not really a Bayesian study, since proper Bayes

estimators are independent of the sampling design and. are generally

not unbiased. Royall (10], [11] and Royall and. Cumberland. [12] studied

the problem of developing confidence intervals of the population

variance by regression estimates. We cannot compare their results

with ours since the problems are different and so are the approaches.

2. Foundations.

Consider a finite population of size N whose units have values V

(real finite) xl,...,XN. According to the modern theory of sampling

surveys (see Godambe [ 5, 6,7] ,  Basu [2] and others ) the population vector

XN = (xl,...,xN) is considered. a parametric point in a parameter space

which belongs to the Euclidean N-space. In the present paper a

sample, s, of size n, 1 < n < N, designates a subvector of X
N

consisting of n components S = < x 1 ,...,x1 >, where
1 n

€ (].,2,...,N) for all j = l,,..,N. A sampling procedure is a plan

according to which the components of are chosen. In a non-Bayesian

theory of sampling surveys one has to introduce probability functions

Is. 
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F(s ) on the sample space, j. , of all possible samples, in order to

discuss random samples. In a Bayesian theory the parametric vector

x1~ Is considered a random vector having a. prior joint distribution

H(xN ) ~~ ~ (N) According to this approach, the population vector,

is a realization of a sample from a “superpopulation”, generated

(like in a Monte Carlo procedure ) accordi ng to H(~~ ). According to

this approach, given any sample s = < x1 ,..., x. >, the joint prior
1

distribution of s can be derived from H(xN ) and the posterior joint

distribution of X
~~~n 

= <x ;  V ~
‘ Z >  and is Independent of the sampling

probability function P(s), which is immaterial for a Bayesian analysis

(see Solomon and Zacks (1970)). For this reason we wifl assume in what

follows, without loss of generality, that the sample consists of the

subvector x~ = (Xj~•••~
xn) and. ~~~ = (xfl+1,...,xN). If x1,...,x~

are assumed. to be priorly independent and. identically distributed then

any sample s can be considered a simple random sample from H, as

in the classical model of inference.

The estimation problem is that of estimating a specified parametric

fUnction e (xN ) of the population vector (e.g. the population mean,

variance, etc. ).

3. Estimators of the Pbpulation Variance.

3.1 Genera]. Structure.

Let = (x1,...,x~) be an observed sample. Designate by i~, ~~
the sample mean and the sample variance, respectively; where

n n
— 1 A2 1 — 2

= ~ x1 and. = ~ (x~ -x~ )
1=1 1=1

5
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i~ and 4 designate the mean and variance of the N-n units

not in the sample then the population variance is

(3.
~~

) 
2~~~ = + (l-~~)T~~~ + ~~~ (i - 

fl )(
_
~~~~~ )

2

Formula (3.1) can be verified since total variance may be written as

the average of the conditional variances plus the variance of the condi-

tional expectations.

Estimators of the population variance are sample statistics with’range

in (O,co). The most common estimators in use are the sample variance

or the “unbiased estimator” = ~~~~~~~ ~ Formula (3.1)

shows .that, regardless of the sampling procedure, a proper estimator of

a’2 (x~ ) can be obtained by substituting estimators of 4 ani in

(3.1). The “unbiased” estimator can be obtained from (3.1) by

substituting 
~~~n = and = _!i_ .  N-n+1 

~~~~~~~. P~ will be shown

in Section is, Bayes estimators of ~
2 ( x )  can be obtained.

by substituting corresponding Bayes estimators for and ~E*
in (3.1).

3.2 Equivariant Estimators.

Following ~ ‘aser [is.] we wiU~~note by [cx,~ ], with -~~ <a <co

and ~ ~L 0, a real affine transformation, i.e. [a,~ ]x = a4~3x. Let 4
denote the group of all such transformations. We define

where y
~= ~~~~~~ i=l,...,N. Every element of 21 transforms Q~(~) into

in a 1:1 fashion. Let ~~ be the group of transformations on the parameter

space of cr2ç~~) induced by the elements of ~~~~ 
That is, if

6

- . -~~~~~~~ - -
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= then o (~~) = 
~
2

cT
2 (x

N ) where ~2 is the element of,d corres- 
V

ponding to [ci,~ ] of G. An estimator o-2 (x~ ) is called equivariant

with respect to G if , for every ta,~ ] c~~

(3.2) ~u.
2([a,~ ) x )  = ~2~.2 ( x )  , € f (n) 

•

The sample variance is equivariant with respect to ~~~ The

statistic

Xn l

- ~n ~n

is maxima]. invariant ‘with respect to ~~. Thus, every eq.uivariant estimator

of cr2(~~) can be expressed in the form

(33)  - 

~~~~~~ 
= *(~mn )

where 4r (~~ ) is a proper positive function of the maximal invariant

statistic u • For further reading on Invariance structures for-n 
V

sampling from finite populations see Chaudhuri (3].

ii. Bayes and Bayes Equivariant Estimators.

is..1 Bayes Estimators.

Let H(~~ ) be a prior distribution in a specified family 1+. Let

L(82
1cr2 ) denote a loss function associated with estimating cr2 (xN ) by

An estimator 
~~~~

(
~~~

) is Bayes with respect to H(x~) and

L(G2,a
2) if it minimizes the prior risk function

(Is..’) R(a2,H) 

~.~ (N) 
L(
~
2(x

fl
),a
2
(xN))dH(Q .

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The following is a general result for the squared-error loss

function:

If ~~~~~~~~~ are i.i.d. random variables having any prior V

distribution H(x) ‘with a finite prior variance, o~, then the

Bayes estimator of a- (xN) Is

(1~.2) = ÷ (1 - ~ )[a-~ + fl (
_

)2] - 

- 

V

where = a-~ (i - 
~~) and is the prior expectation. 

V

The proof of (ls..2) proceed.s as follows. The Bayes estimator of -

given x~, for the squared-error loss function is the posterior

expectation of (3.1). Furthermore, since the components of are

priorly independent

2 2 N-n-i 2EukN_n ~~~ 
= “~N-n~ 

= N..n °b ‘

for any prior distribution H, having variance CT0. Moreover,

2 ~.
2 V

(li. Ii.) 
- 

~~n
_
~~ _n )2~~xi1 = n~~O~ ~

‘i
~~~~

•

Substituting these expressions in (3.1) one obtains (L2). In

many situations it is not unreasonable to assume that x1,.. . ,xN are

priorly i i.d. Hence, formula (ls. .2) is a very general formula, since

it does not depend on the form of H (x), but only on the prior mean

and variance. These values may be known from previous experience.

8 
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1e.2 Bayes Equivariant Estimators.

Consider the structur e of Bayes equivaria.nt estimators . We have

* ~n 1 *
T ’
a-n a-n -

where x~~~ = (Xfl÷1
,.;.,XN) and U is maximal Inva.riantwith respect to

Let vN f l  and. WN n  be the mean and the variance of U
N

. One can

-express the population variance -in -±hese terms in the form

2 A 2 f l  n 2 - n 2(Ii.. 5) a- = cr~ [~~ + (1 - 

~
)(w

N 
+ 

~ 
v~~~)]

Thus, comparing (3.3) and (1~..5), the ~fr-function of an equivariant

estimator should be chosen to estimate the function

- 2 2 n n 2 n 2(li..6) D(VN , VN ) = + (1_
~~

)(w N f l  + 
~i 
vN n )

Let L(*,D) be a loss function for the estimation of D(w2 ,v2 
) byN-n N-n

L(4f,D) is invariant with respect to 21. Let G(u ,u )  be
a prior distribution induced by- H(x N ). The prior risk associated with

and G is

(is..?) R(~r,G) = $L(* (u~),D(~~ ,v~ ))dG(u ,u~ ~~) .

An estimator 
~~~~~~~~ 

is called Bayes equivariant if minimizes (li..7 ).

Notice that the criterion of minimizing (ls..7) is the same as minimizing
2 2 2 1 s.the Bayes risk for the quadratic loss L(~ ,a-
1~

) = 
~~~~~ ~~~ where

a’ A2e =

9
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In many applications it would be reasonable to assume that the family 1f
of prior distributions is a family with location and scale parameters. In

other words1 assume that all the prior distributions of 14- are of the form

H 
X
1

ML) X2~L~ XNM.LO
‘ cr0 ‘ ‘  a0 ‘

where -~~~ < <co and. 0 < a 0 <co. In this case the Bayes equivariant

estimator depends only on the general form of H(xl,...,xN). Indeed~, the

distribution G(u~~u~~~) is the same for all and a0 of distributions

in #. 
V

Equivariant estimators in the strict sense were defined as those of

the form ~~~r(u n ). The Bayes estimator ~~ (L2) is thus not strictly

equivariaxit. However, if X
N 

is transformed to (cZ,
~
]xN the prior

parameters (~~,a-0 ) should be transformed to (a,~ }(p~,a-0) =

Let ~(x- ) denote the Bayes estimator with the prior parameters
p—fl

and cr0, respectively. Then ~(x ) is generalized equivariant in
-‘fl

the sense that

(is.8) ~~~~~~~~~~~~~~~~~~ = ~ ,cr )~~~~ )

for all -co <cx < c ot 0 <~~ <co; and ~~~~~ 
~n Furthermore, the Bayes

estimator 
a- ) (x~) is also Bayes in the class of all generalized 

V

p0, 0
equivariant estimators with respect to the quadratic loss (~-o-~)

2
/~~
.

10
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) - i . 5  Examples of WL,yus E Iu iv ar:UL nt 1~ f - I

1~..5.l Normal Priors.

Suppose that X
l~~~•~~,

X
N 

are priorly independent and. identically

distributed (i.i.d.) normal variables with prir~r mean and prior

variance cr~. ~/f— consists of all such distributions with -~~~ < < c~

and 0 • Under this model the sample statistics x and

are independent of and. ~~ • The Bayes equi variant estimation is
N-n

(1
~.9) 

~BE 
( x )  = + (l-~~) {E (w~ l u )  + ~~E[V~~~I u) })

We now show that and VNn 
are independent of u~. Indeed, by

the Bayes model x and * are independent. Hence (~~ ,~~ ,u )  is

independent of 
~~~~~~~~~ 

Furthe~~ore, ~~~~~~~ is a complete sufficient

statistic for the subfamily of prior distributions of x~. Hence , from

Basu ’s theorem (Basu, [1])  u~ iS independent of ~~~~~~~~~~~~~ Finally,

since uj is a function of (x ,X ,~’ ) ,  u~ and 
~~-n 

are inde-

pendent . Henc e,

(~.io ) E(w~~~j~~) = E( w~~~ ) = ~~~~~~~~• ~~~~ E(F[N-n-l,n-l1) = 
~~~~~~~~

. ~~~
-l

Similarly,

Ii

_ _ _ _ _ _ _  - - — -_ - ____________________________________________
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E(v~~~ I u )  = E(v~~~) = 
(N-n)(n-~)

Substituting these results in (L~..9) we obtain as the Bayes equivariant

estimator

(li..l2) BE~~fl~ 
= ~~ (l - 

~
.) (

~ 
.
~
. .

~
...)

which, in large populations is close to ~~ (x. -5~)2/ (n-3) .
1

It is well known (see Zacks [17; pp. 31~6))  that the minimum mean-

squared-error equivariant estimator of in the i.i.d. case is

~~
‘
l (x~

_
~
)
2
/(n+l). On the other hand, if the loss function is the

#~ 2 2 ~~~quadratic loss O~~~~n 
the best eqidvariant estimator is

~~~~~~~~~~ 

(x1
_
~~)

2
/ (n_ 3) .  This confirms the above result.

L3.2 Exponential Priors

Suppose that X l~~
..., X N 

are priorly i.i.d., with a common exponen-
2 2

tia.1 distribution, with mean p0 (th e prior variance is = p0 ). It

is shown in [16] that the Bayes equivariant estimator is

2 2
f (u )n

‘~2 ~2 n  n —jn 1(I~.l3 ) a-BE ~n 1N ~‘ N~ (n-2)(n -~ ) ).F o(~)

where f(u~ ) —~ -rnin(u1,.. .,u~ ). Thus, in contrast to the normal case,

in the exponential priors model the Bayes equivarian t estimator depends

on too.

V 12
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5. Bayes Risk Efficiency.

In the present section we introduce an index of Bayesian efficiency

of estimators of 4 Given a prior distribution, H(x N ), we denote by

R(a- ,H) the -prior risk function of an estimator a- under H. In the

present section we consider squared-error loss , (a2-cr~~)
2, only.

V Generalization to quadratic loss functions can be readily attained.

Since the minimal prior risk is attained by the Bayes estimator

with proper prior parameters o-~ , we define the prior

relative efficiency of an estimator cr as

2 R (~
2,H)

(5.’) EE(~ ,H) = .

B(~~,H)

For any estimator, 0 < RE(~r~ ,H) < 1.

5.1 Exponential Priors-Example.

We provide now a numerical example of estimating the variance of

a small population, N = 100, when the population variates are priorly

i.i.d. exponential random variables with expectation ~~~ = 10. The sample

size is n = 10. rn Table 1 we present the values of the classical and

the Bayes estimators determined by 52 independent simulation runs. In V

each case we give also the value of a-~ . We see that generally the

Bayes estimator is closer to the popul ation variance. The prior relative

efficiency of against is estirn~ ted to be RE = .122. Note

and R(a-~ ) are the sample estimates o f the prior mean-squared-errors

1:;

-~ _

~~~~~~

V

~
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‘2 2 2  ~2 2 2
EH ~~

a-n a-N~ 
) and 

~~~~~~~~~~ ~ respectively. We see in this example

th at the classical sample variance is very inefficient compared to the

Bayes estimator. In the following exa’nple we show some analytical

comparisons for the normal case.

5.2 Normal Priors.

The prior relative efficiency index (5.1) can be expressed also

in the form

0 E
11

1 (o 
~~~~ 

~ —l
(5. 2 )  RE(~~ ,H )  [1 + F~1 ( PVR J 

—

where PVR is the posterior variance of the Bayes estimator 4. In

the case of prior i.i.d. normal. ( t t ~) , ci~~) variables, one obtains

l i

~~~~~ 
E (P ~~ (H ,x ) )  ~~~ ( V l- f ) (1 -~~~~~( 1-f))

where f n/N. Consider the sampl e variance ~~~~~ Due to the prior

independence of x and. we obtai n

(5. )~) E [[~~ - - (l -~~ ) [a-~~(.l -~~) 4 ~~ ( ) 2 ] )

= (~~ f ) 2 1~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

2 2 .where X1[n-l J and X2 [i 1 desa~natc i ndc pendcnt ch :L— squared r.v. ‘ s.

From (5. ) and (5.1k ) ,  the prior relative e Ticiency of relative

l1i~

_ _ _ _  - ~~~~~~~~ ~~~~~~~~~~~~~~~~ V V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

- V. V



Table 1. 50 Independent Simu1~ttion Runs oP Exponential Fbpulationc

of Size N 100. Variance Estimates are Based on Sampl:

of Size n =  10.

. A2 . A2 2
i a-~ (i) a-B(i) o

~N
(i)

1 11.0279 91.3822 59.31401
2 25.90147 95.5585 99.7939
3 163.197 14 108.14712 117.9333
14 1114.8876 102. 141455 112.76914
.5 148. 511-73 96.1006 1140. 1i537
6 214.1673 92.6005 95.37814 27 233.91413 115.0590 110.2580 u--)  = 3887.67
8 214.21 149 92.8096 73.1228
9 36.092 8 93.78911- 88.0811-2

10 58.1589 95.876E~ 92.6123
U 82. 14155 98.25141 100.8501 A
12 110.1057 10i.14l~~ 82.7390 R( a-~ ) = 14714.90
13 30.7288 914.2091 82.7665

92.7353 99.3592 66.71116
15 111.1656 92.9971 100.5613
16 30.6568 95.l32~ 87.02148 217 75. 112914 97.7225 711.1037 RE(~ ,H) = .12216
18 123.1211-2 102.96611 1014.8201
19 34.97 140 95.1125 86.14911-2
20 226.5559 116.6118 118.11-538
21 16.911i.7 92.2562 13~1.908822 98.51459 100.9711 72.2 1479
23 148.85 85 914.91472 1314.9985
21i- 511..3939 95. 14909 1114.8011.3
25 52.1598 95.21457 158.8236 A
26 55. 5302 95.6501 79.0303
27 171.1030 107.1958 87 .0796
28 105.0818 100.6807 128. 05511
29 17.51109 92.9367 95.6511 $
30 23.1610 93.2519 914.2 1107 4
31 116.631~i 101.8029 118.21461
32 27.0976 914.11456 714.19148
33 69.11181 98.121-58 101.31139 ~~‘314 20.7325 93.021~7 98.1385
35 191.2939 112.5688 121.3687
36 199. 9531 110.6755 105.3757
37 83.3185 98.55711 67.86114
38 17.2250 95.05145 77 .5798
39 218.71514 112.1959 108.5281

30.00314 95.1121 85.3298
141 311.1185 93.)i-987 80.7266
142 32.7168 93.62423 106.18115
113 50.91459 95.52514 77.0860
1111 141.14 210 914 .8028 614.2112
145 36.6681 914.1386 75.0202
14~ 22.9525 9- 5. 66-~11 88,6936
117 11i.h~~~ 911.1452 611,5216118 1149.5766 106.0161. 99.7121119 19.2177 101.~)h16 79.8605 

—

50 614.9260 96.~ 5l7 60 ~8i6

_ _ _  - ~~~~~~V 
_ _ _ _  ~~~~~~~~ V . V~~~~~~~~~~~~_ _ _
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to the prior normal dislributions is:

- . 2 -1
0 I N( ] — f ) [— _ 4  I ( i — ~~-)~ — ( 1 —

(5.5) RE(~-~,Fr) J i. I __________________________

L 2(i - ~ (l-f))

The relative efficiency function is independent of the prior

paramet ers , since a-0 is a scale parameter of the distribution. We

therefore provide in the following table some relative efficiency values

as functions of the sample -fraction f and the population size, N.

Table 2 • The Prior Relative Efficiency of

N\f 0.10 0.25 0.50 0.75

100. 0.1114 0.310 0.666 0.921
200. 0.112 0.309 o.666 0.922
300. 0.111 0.308 o.666 0.922
1400. 0.111 0.308 o.666 0.922
500. 0.111 0.508 o.666 0.923
6oo. 0.Ui 0.508 o.666 0.923
700. 0.111 0.300 0.667 0.923
800. o.uo o.~ o8 0.667 0.923
900. 0.110 0.308 0.667 0.923

1000. 0.110 0.308 0.667 0.923

A 0
From Table 2 the prior relative efficiency of is almost independent of

the population size N and is somewhat greater than the sample fraction,

f. These numerical results show the extent of possible improvement in

est~imation ir good. information is available on the prior distribution.
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In order to analyze the extent of errors -~ i~ the J)f~ or as L~p~ io~ s co~icerniflg

the values of and. a-0 we derive, on the basis of (5.2), the prior

A2relative efficiencies of a- (x ) ,  under (~~ ,a-0 ). It i~
-
~ a straight-

forward matter to show that the prior relative efficiency of ~r
2 (x

is

2 2 2 2

2 N( 1-f)[ (p-1~ f~ )  -1-l~f L.j -1
(5 .6)  BE (0H, ~~ = [1 1 

“
‘ 2(1-j~ (1-f))

where p = c4/ 4 and ~ = (~1-1-’0)/a-0
.

In Table 3 we present the prior relative efficiency of the Bayes estinator

~~~~~~ (x~~) as a function of f, ~ and ~.=p -l , where H’ is the n(~1,a-~ ) distribution.

We see that the magnitude Qf B is not so important, but devi ations fron a-0

larger in magnitude than 10 percent reduce the prior relative eft’icier.cy

below that of ~~~~~ In Table 1i~ we provide these prior relative efficiency

values for values of )~. between -7.5~ to 7.5~ . We see that in thjz

range the Bayes estimator is considerably more efficient than the classical

sample variance.
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Table 3. The Prior Relative Effic iency  of 
~~~~~~

, (x n )
~ ~~~~~ ~~~~~~~~~~~~ 

V

Sample Fraction -~ .10

~~X -.30 -.20 -.10 0.0-3 0.10 0.20 0.50
-.50 0.028 0.067 0.279 0.75~’ 0.1214 0.0142 0.021
-.110 0.027 o.o6i 0.238 0.8714 0.1141 0.0145 0.022
-.30 0.026 0.057 0.211 0.950 0.157 0.0148 0.023
-.20 0.025 0.055 0.1914 o.cj36 0.170 0.051 0.023
-.10 0.0214 0.053 0.185 0.998 0.179 0.052 0.0214
.00 0.0211 0.055 0.182 1.000 0.182 0.053 0.0211
0.10 0.0211- 0.053 0.135 0.998 0.179 0.052 0.0214
0.20 0.025 0.055 0.1914 0.986 0.170 0.051 0.025
0.30 0.026 0.057 0.211 0.950 0.157 0.0118 0.023
0.140 0.027 0.061 0.238 o.871~ o.114J. 0.01~5 0.022
0.50 0.028 0.067 0.279 0.7514 0.1211- 0.0142 0.021 V

Sample Fraction = .25

~\x -.30 -.20 -.10 0.00 0. 10 0.20 0.30
-.50 0.0145 0.122 0.617 0. -~9i 0.091 0.037 0.020
— .11-0 0.058 o.o ?11. 0.1115 0.602 0.119 0.01414 0.023
—.30 0.033 0.078 0.3014 0.817 0.l5() 0.051 0.025
-.20 0.031 0.069 0.21~7 0.950 0.181 0.057 0.027
-.10 0.029 o.o611- 0.219 0. 9914 0.232 o.o6i 0.028
.00 0.029 0.062 0.210 l.02’. 0.210 0.067 0.029
0.10 0.029 0.0614 0.712 0.7511 0 . ? Y ~ 0.061 0.028
0.23 0.051 o.o6o o.o11-y 0. 151 0.12- 1 0.057 0.027
0.50 0.033 0.078 o.5o14 0.717 0.151 0.051 0.075
0.140 0.038 0.0914 0.1415 0. 6-’; 0.111 ~•Q1414 0.023
0. ~o 0.0145 0. 222 0.617 0. 71 (~.0~i 0..>~7 0.020

Sample Fraction .50

&~X -.50 — .20 — .10 0 .0)  0.1) 0.20 0.30
-.50 0.1124 0.395 0.780 0.1’ 0.u [~ o. o ;6 0.022
— .140 0.076 0.21!; 0.0147 0. ;‘( ~ 0. 1 0. nSB 0.027
— .30 0.058 0. 1142 0.555 () .t’-11 5 ~~. 1 ? (.07’ 0.352
— .20 0.0148 0.110 0. 567 0. ~ (.~‘1( 0.076 0.038
—.10 0.0 1411- 0.0’ Y 0.717 0. ~. -: ~. 6~ 0.0111

.02 o.o11~ 0.091 0.266 1..~ ()~ ‘~~0 ~~~ 1 o. o14i
0. 10 0.011-14 0.095 0.307 o. 7 (~~~‘‘ /  0. H 7  0.011-1
0.20 o.0148 0.110 0.382 () .F’ - 0. (‘ .71 6 0 .0(6 o.o~ 8
0.30 0.058 0.1)VV , 0 .5 5 5  o.6115 ( . 1  

~~~~~~~~ 0.0~~’
0.110 0.076 0.21.2 4 0.~ 77 U. -7~ U . lo 0.0118 0.027
0.50 0. 1114 0.325 0.780 ~~~. 1~~- , 0.~ -7~ O. o - 6 0.022

C’i~
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Tabl e ii.. Prior Relat ive Efficiency of ~~~~~~, (x~~) , N= 1,0 - -1 .

Sample Fraction .10

~\x -.075 -.050 -.025 0.000 0.025 0.050 0.075
-.50 o.14-6i 0.75 14 0.957 0.75 14 0.1161 0.279 o.i8o
-.140 0.385 0.6145 0.959 0.871k 0.560 0.3314 0.210
-.30 0.336 0.5614 0.8814 0.950 0.651 0.387 0.258
-.20 0.305 0.510 0.829 0.9% 0.722 0.1431 0.262
-.10 0.288 0.1160 0.793 0.993 0.766 0.1160 0.278
-.00 0.283 0.1470 0.780 1.000 0.780 0.1~7Q 0.285
0.10 0.288 0.14.80 0.793 0.998 0.766 0.1160 0.278
0.20 0.305 0.510 0.829 0.9% 0.722 o.11s1 0.262
0.30 0.336 0.5614 0.8811. 0.950 0.651 0.587 0.258
0.140 0.385 o.61~5 0.959 0.871k 0.560 0.5311 0.210
0.50 0.1461 0.7514 0.957 0.7514 o.~6i 0.279 0.180

Sampl e Praction - .25

b\x -.075 -.050 -.025 0.000 0.025 0.050 0.075
-.~ o 0.868 0.868 0.617 0.391 0.252 0.171 0.122
-.110 0.658 0.911 0.8711 0.602 0.378 0.214.11. o.i66
-.30 0.14811 0.759 0.965 0.817 0.532 0.333 0.217
-.20 0.385 0.619 0.910 0.950 0.678 0.1123 0.268
-.10 0.336 0.5110 0.858 o.991~ 0.777 0.1491 0.507
-.00 0.321 o.~ i6 0.810 1.000 0.810 0.516 0.321
0.10 0.336 o.51~o 0.888 0.9911 0.777 0.1191 0.307
0.20 0.385 0.619 0.910 0.950 0.678 0.1~25 0.268
0.30 0.14811 0.759 0.965 0.617 0.525 0.335 0.217
0.11.0 o.6~8 0.911 0.8711 0.602 0.578 0.2i~11 o.i66
0.50 0.868 0.868 0.617 0.591 0.252 0.171 0.122 V

Sample Fraction -~ .50

Ax  -.075 -.050 0.025 0.000 0.025 0.050 0.075
-.50 0.571 0.395 0.276 0.19) 0.1I~8 o.ii11 o.o~~_ • 1.~ 0.921 0.766 o.~ 14?~ 0.375 0.261 0.188 0.111-].
-.30 0.787 0. 951 0.873 o.614~ o.1411o 0.303 0.215
-.20 0.573 o.8o3 0.9711 0.67-; 0.655 o.1~145 0.305
-.10 o.11118 0.662 0.905 0.96~ o.8i~ 0.568 o.s811.

V 

—.‘OO 0.1415 0.61.5 o.86~ 1.000 O.r6~ 0.615 0.l~150.11,) 0.1111.8 0.662 0.905 0.7$’l o.53~
; o.~ 68 0.3814

0.20 0.563 o.8o; 0.9711 O. R’ ,0. ~~~~~ 0.1;145 0.305
0.50 0.787 0.951 0.873 o.6 11~ 0.11-110 0.1i3 o.2114

~~~~ 0.921 0.766 o.~ 1111 0.373 0.761 o.i88 O.11~].
0.50 0.571 0.395 0.276 0.199 0.1)~0 0.1114 0.093
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